Advertisements
Advertisements
Question
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Solution
`1/(2"a") log |(x - "a")/(x + "a")|`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(5 - 16"x"^2)`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate:
`inte^x sinx dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`