Advertisements
Advertisements
प्रश्न
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
उत्तर
`1/(2"a") log |(x - "a")/(x + "a")|`
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log x.
Integrate the function in (sin-1x)2.
Integrate the function in x sec2 x.
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/(4x + 5x^(-11)) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`intsqrt(1+x) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`