Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
उत्तर
Let I = `int_0^(pi/4) (dx)/(1 + tanx)`
= `int_0^(pi/4) (dx)/(1 + sinx/cosx)`
= `int_0^(pi/4) (cos x dx)/(cosx + sinx)`
= `1/2 int_0^(pi/4) (2cosx)/(cosx + sinx) dx`
= `1/2 int_0^(pi/4) (cosx + sinx + cosx - sinx)/(cosx + sinx) dx`
= `1/2 [int_0^(pi/4) (cosx + sinx)/(cosx + sinx) dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`
= `1/2 [int_0^(pi/4) 1dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`
= `1/2 (I_1 + I_2)`
Where, I1 = `int_0^(pi/4) 1dx`
= `[x]_0^(pi/4) = pi/4`
And I2 = `int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx`
Let cosx + sinx = t
⇒ (–sinx + cosx)dx = dt
When x = 0, t = 1
And x = `pi/4`, t = `2/sqrt(2)`
∴ I2 = `int_1^(2/sqrt(2)) (dt)/t`
= `[logt]_1^(2/sqrt(2))`
= `log 2/sqrt(2) - log 1`
= `log 2/sqrt(2) - 0`
= `log2^(3/2)`
= `3/2 log 2`
∴ I = `1/2(I_1 + I_2)`
or I = `1/2(pi/4 + 3/2 log 2)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in `x^2e^x`.
Integrate the function in x log 2x.
Integrate the function in x cos-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (cos2x)/(sin^2x cos^2x) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
The value of `inta^x.e^x dx` equals