Advertisements
Advertisements
प्रश्न
Evaluate `int 1/(4x^2 - 1) "d"x`
उत्तर
Let I = `int ("d"x)/(4x^2 - 1)`
= `1/4 int ("d"x)/(x^2 - 1/4)`
= `1/4 int ("d"x)/(x^2 - (1/2)^2`
= `1/4 xx 1/(2 xx 1/2) log |(x - 1/2)/(x + 1/2)| + "c"`
∴ I = `1/4 log|(2x - 1)/(2x + 1)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sec2 x.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`