Advertisements
Advertisements
प्रश्न
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
उत्तर
Let I = `int"e"^x (1/x - 1/x^2) "d"x`
Put f(x) = `1/x`
∴ f'(x) = `-1/x^2`
∴ I = `int"e"^x ["f"(x) + "f'"(x)] "d"x`
= `"e"^x*"f"(x) + "c"`
∴ I = `"e"^x* 1/x + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int1/(x(x-1))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`