मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following integrals : ∫2x+32x2+3x-1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`

बेरीज

उत्तर

Let I = `int (2x + 3)/(2x^2 + 3x - 1).dx`

Let 2x + 3 = `"A"[d/dx(2x^2 + 3x - 1)] + "B"`

= A(4x + 3) + B
∴ 2x + 3 = 4Ax + (3A + B)
Comapring the coefficientof x and constant on both sides, we get
4A = 2 and 3A + B = 3

∴ A = `(1)/(2) and 3(1/2) + "B"` = 3

∴ B = `(3)/(2)`

∴ 2x + 3 = `(1)/(2)(4x + 3) + (3)/(2)`

∴ I = `int (1/2(4x + 3) + (3)/(2))/(2x^2 + 3x - 1).dx`

= `(1)/(2) int (4x + 3)/(2x^2 + 3x - 1).dx + (3)/(2) int (1)/(2x^2 + 3x - 1).dx`

= `(1)/(2)"I"_1 + (3)/(2)"I"_2`

I1 is of the type `int (f'(x))/f(x)dx = log|f(x)| + c`

∴ I1 = log |2x2 + 3x – 1| + c1

I2 = `int (1)/(2x^2 + 3x - 1).dx`

= `(1)/(2) int (1)/(x^2 + 3/2x - 1/2).dx`

= `(1)/(2) int (1)/((x^2 + 3/2x + 9/16) - 9/16 - 1/2).dx`

= `(1)/(2) int (1)/((x + 3/4)^2 - (sqrt(17)/4)^2).dx`

= `(1)/(2) xx (1)/(2 xx sqrt(17)/(4))log|(x + 3/4 - sqrt(17)/4)/(x + 3/4 + sqrt(17)/4)| + c_2`

= `(1)/sqrt(17)log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c_2`

∴ I = `(1)/(2)log|2x^2 + 3x - 1| + (3)/(2sqrt(17))log|(4x + 3 - sqrt(17))/(4x + 3 + sqrt(17))| + c`, where c = c + c2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.3 | पृष्ठ १२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :`intxlogxdx`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`(1+ log x)^2/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


`int logx/(log ex)^2*dx` = ______.


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate: `int "e"^sqrt"x"` dx


`int cos sqrtx` dx = _____________


`int (cos2x)/(sin^2x)  "d"x`


`int cot^2x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (logx)^2/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1+x+x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×