Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
उत्तर
`int(x - 2)/sqrt(x + 5).dx`
= `int((x + 5) - 7)/sqrt(x + 5).dx`
= `int((x + 5)/sqrt(x + 5) - 7/sqrt(x + 5)).dx`
= `int(x + 5)^1/sqrt(x + 5)dx - int7/sqrt(x + 5)dx`
= `int(x + 5)^(1/2) dx - 7 int1/(x + 5)dx`
= `((x + 5)^(1/2 + 1))/((1/2 + 1)) - 7 xx 2sqrt(x + 5) + c`
= `(2)/(3)(x + 5)^(3/2) - 14sqrt(x + 5) + c`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (sin4x)/(cos 2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int 1/(x(x-1))dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`