Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
उत्तर
Let I = `int (x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x).dx`
= `int a^(x + tan^-1x).((x^2 + 2)/(x^2 + 1)).dx`
Put x + tan–1x = t
∴ `(1 + 1/(1 + x^2)).dx` = dt
∴ `((1 + x^2 + 1)/(1 + x^2)).dx` = dt
∴ `((x^2 + 2)/(x^2 + 1)).dx` = dt
∴ I = `int a^t dt = a^t/loga + c`
= `(a^(x + tan^-1 x))/loga + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int(log(logx))/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int1/(4 + 3cos^2x)dx` = ______
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following
`int1/(x^2 +4x-5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sin^2(x/2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int1/(x(x-1))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`