Advertisements
Advertisements
प्रश्न
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
पर्याय
ex log x + c
ex (log x)2 + c
e2x log x + c
e2x (log x)2 + c
उत्तर
ex (log x)2 + c
संबंधित प्रश्न
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (cos2x)/(sin^2x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int cos^3x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`