Advertisements
Advertisements
प्रश्न
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
पर्याय
`2sqrt(cotx) + c`
`-2sqrt(cotx) + c`
`(1)/(2)sqrt(cotx) + c`
`sqrt(cotx) + c`
उत्तर
`-2sqrt(cotx) + c`
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sin x/(1+ cos x)`
Solve: dy/dx = cos(x + y)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int (1 + x)/(x + "e"^(-x)) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^3 e^(x^2) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`