Advertisements
Advertisements
प्रश्न
Integrate the functions:
`sin x/(1+ cos x)`
उत्तर
Let `I = int (sin x)/(1 + cos x) dx`
Put 1 + cos x = t
⇒ -sin x dx = dt
∴ `I = - int dt/t = -log |t| + C `
= - log |1 + cos x| + C
`= log (1/ (|1 + cos x|)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (log x)/(log ex)^2` dx = _________
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int "cosec"^4x dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`