Advertisements
Advertisements
प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
उत्तर
Consider the given integral
`I=int((2x-5)e^(2x))/((2x-3)^2)dx`
Rewriting the above integral as
`I=inte^(2x-3) xxe^3(2x-3-2)/((2x-3)^3)dx`
`=e^3inte^(2x-3)[(2x-3)/(2x-3)^3-2/(2x-3)^3]dx`
`=e^3inte^(2x-3) [1/(2x-3)^2-2/(2x-3)^3]dx`
Let us consider, 2x -3 = t
⇒ 2dx = dt
`therefore I=e^3/2inte^t[(t-2)/t^3]dt`
Let `f(t)=1/t^2`
`f'(t)=(-2)/t^3`
if I = ∫et[f(t)+f'(t)]dt then, I = etf(t) + C
`:.I=e^3/2xxe^txxf(t)+C`
`= e^3/2xxe^txx1/t^2+C`
`=e^3/2xxe^(2x-3)xx1/(2x-3)^2+C`
`=e^(2x)/(2(2x-3))+C`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int 1/(xsin^2(logx)) "d"x`
`int sec^6 x tan x "d"x` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).