Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
उत्तर
`int(5x + 2)/(3x - 4).dx`
= `int(5/3 (3x - 4) + 20/3 + 2)/(3x - 4) dx`
= `int(5/3 (3x - 4) + 26/3)/(3x - 4) dx`
= `int[5/3 + ((26/3))/(3x - 4)] dx`
= `(5)/(3)int 1 dx + (26)/(3) int 1/(3x - 4) dx`
= `(5)/(3)x + (26)/(3).(1)/(3)log|3x - 4| + c`
= `(5)/(3)x + (26)/(9)log|3x - 4| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
cot x log sin x
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Solve: dy/dx = cos(x + y)
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int logx/x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int cot^2x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Write `int cotx dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`