मराठी

∫ √ 16 X 2 + 25 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]
बेरीज

उत्तर

\[\int \sqrt{16 x^2 + 25} \text{ dx}\]
\[ = \int \sqrt{16\left( x^2 + \frac{25}{16} \right)}\text{ dx}\]
\[ = 4\int \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \text{ dx}\]
\[ = 4\left[ \frac{x}{2}\sqrt{x^2 + \left( \frac{5}{4} \right)^2} + \frac{\left( \frac{5}{4} \right)^2}{2}\text{ ln }\left| x + \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} \text{ dx} = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = 2x \sqrt{x^2 + \frac{25}{16}} + \frac{25}{8}\text{ ln }\left| x + \sqrt{x^2 + \frac{25}{16}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.28 | Q 8 | पृष्ठ १५४

संबंधित प्रश्‍न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(1 + sin2x)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following

`int x^3 e^(x^2) ` dx


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×