Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
उत्तर
\[\text{ Let I} = \int \frac{\text{ sin 2x dx}}{a^2 \sin^2 + b^2 \cos^2 x}\]
\[\text{ Let a}^2 \sin^2 x + b^2 \cos^2 x = t\]
\[ \Rightarrow \left[ a^2 \left( 2 \sin x \cos x \right) + b^2 \left( 2 \cos x \times - \sin x \right) \right]dx = dt\]
\[ \Rightarrow \left( a^2 - b^2 \right) \text{ sin 2x . dx} = dt\]
\[ \Rightarrow \text{ sin 2x dx }= \frac{dt}{a^2 - b^2}\]
\[ \therefore I = \frac{1}{a^2 - b^2}\int\frac{dt}{t}\]
\[ = \frac{1}{a^2 - b^2}\log t + C\]
\[ = \frac{1}{a^2 - b^2}\log \left(\text{ a} ^2 \sin^2 x + b^2 \cos^2 x \right) + C \left( \because t = a^2 \sin^2 x + b^2 \cos^2 x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
cot x log sin x
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
`int cot^2x "d"x`
`int dx/(1 + e^-x)` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`