Advertisements
Advertisements
प्रश्न
`int secx/(secx - tanx)dx` equals ______.
पर्याय
sec x – tan x + c
sec x + tan x + c
tan x + sec x + c
– (sec x + tan x) + c
उत्तर
`int secx/(secx - tanx)dx` equals tan x + sec x + c.
Explanation:
`int secx/(secx - tanx)dx = int (1/cosx)/(1/cosx - sinx/cosx)dx`
= `int dx/(1 - sin x)`
= `int 1/(1 - sinx) xx (1 + sin x)/(1 + sin x)dx`
= `int (1 + sinx)/(cos^2x)dx`
= `int sec^2 x dx + int tan x sec x dx`
= tan x + sec x + c.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int cos sqrtx` dx = _____________
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^3 e^(x^2) dx`
Evaluate `int1/(x(x - 1))dx`