Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(1+ log x)^2/x`
उत्तर
Let `I = int (1 + log x)^2/x dx`
Put 1 + log x = t
`1/x dt = dt`
Hence, `I = int t^2` dt
`= t^3/3 + C`
`= 1/3 (1 + log x)^3 + C`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 - tan x)`
Solve: dy/dx = cos(x + y)
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
`int 1/(cos x - sin x)` dx = _______________
Evaluate `int(3x^2 - 5)^2 "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`