मराठी

Integrate the functions: 2cosx-3sinx6cosx+4sinx - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`

बेरीज

उत्तर

Let I = `int (2 cos x - 3 sin x)/(6 cos x + 4 sin x)` dx

`= 1/2 int (2 cos x - 3 sin x)/(3 cos x + 2 sin x)` dx

Put 3 cos x + 2 sin x = t

(- 3 sin x + 2 cos x) dx = dt

Hence, `I = 1/2 int 1/t` dt

`= 1/2 log abs t + C`

`= 1/2  log abs (3 cos x + 2 sin x) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.2 [पृष्ठ ३०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.2 | Q 24 | पृष्ठ ३०५

संबंधित प्रश्‍न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`((x+1)(x + logx)^2)/x`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int logx/x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intxsqrt(1+x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×