Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
उत्तर
Let I = `int 1/("x"^2 + 4"x" - 5)` dx
`= int 1/("x"^2 + 4"x" + 4 - 4 - 5)` dx
`= int 1/(("x + 2")^2 - 9) "dx"`
`= int 1/(("x" + 2)^2 - 3^2)` dx
`= 1/(2 xx 3) log |(("x" + 2) - 3)/(("x" + 2) + 3)|` + c
∴ I = `1/6 log |("x" - 1)/("x" + 5)|` + c
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int(log(logx))/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int sin^-1 x`dx = ?
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).