Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
पर्याय
`(1 - x)^(-1) + c`
`(1 + x)^(-1) + c`
`(1 - x)^(-1) - 1 + c`
`(1 - x)^(-1) + 1 + c`
उत्तर
`int(1 - x)^(-2)dx` = `bb(underline((1 - x)^(-1) + c))`.
Explanation:
`int(1 - x)^(-2)dx = ((1 - x)^(-2 + 1))/((-2 + 1)).d/dx(1 - x) + c`
= `(1 - x)^-1/((-1)).(0 - 1) + c`
= (1 – x)–1 + c
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`xsqrt(x + 2)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int 1/(cos x - sin x)` dx = _______________
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `intsinx/(sinx - cosx)dx` equals ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`