Advertisements
Advertisements
प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
उत्तर
`Let I= int(x-3)sqrt(x^2+3x-18x)dx`
`Put sqrt(x^2+3x−18)=t ⇒(x^2+3x−18) =t^2`
On differentiating with respect to x, we get:
`2x+3=2t(dt/dx)`
`x+3/2=t(dt/dx)`
`x+3/2+3−3=t(dt/dx)`
`x−3+9/2=t(dt/dx)..............(1)`
The given integral can be rewritten as follows:
`I=int(x−3+9/2-9/2)sqrt(x^2+3x-18)dx`
`=int(x-3+9/2)sqrt(x^2+3x+18)dx-9/2intsqrt(x^2+3x+18)dx..............(2)`
Suppose that `l_1=int(x-3+9/2)sqrt(x^2_3x-18)dx`
`"On using equation "(1), we getl_1=intt^2dt=t^3/3+C_1=(x^2+3x-18)^(3/2)/3+C_1`
Suppose that `l_2=intsqrt(x^2+3x-18)dx`
`intsqrt(x^2+3x-18)dx=intsqrt((x+3/2)^2-(9/2)^2)dx`
`=((2x+3)/4) sqrt(x^2+3x-18)-81/8log|(2x+3)/2+sqrt(x^2+3x-18)|+C_2`
`l=(x^2+3x-18)^(3/2)/3-9/8(2x+3)sqrt(x^2+3x-18)+729/16log|(2x+3)/2+sqrt(x^2+3x-18)|+C`
where C=C_1+C_2 is a constant.
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int(log(logx))/x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`