Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
उत्तर
Let I = `int x^2/sqrt(9 - x^6).dx`
Put x3 = t
∴ 3x2 dx = dt
∴ x2dx = `(1)/(3)dt`
∴ I = `int 1/sqrt(9 - t^2).dt/(3)`
= `(1)/(3) int dt/sqrt(3^2 - t^2)`
= `(1)/(3) sin^-1(t/3) + c`
= `(1)/(3)sin^-1(x^3/3) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int x^3"e"^(x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int sec^6 x tan x "d"x` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
`int x^3 e^(x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`