मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : x29-x6 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`

बेरीज

उत्तर

Let I = `int x^2/sqrt(9 - x^6).dx`

Put x3 = t
∴ 3x2 dx = dt

∴ x2dx = `(1)/(3)dt`

∴ I = `int 1/sqrt(9 - t^2).dt/(3)`

= `(1)/(3) int dt/sqrt(3^2 - t^2)`

= `(1)/(3) sin^-1(t/3)  + c`

= `(1)/(3)sin^-1(x^3/3)  + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.23 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int x^3"e"^(x^2) "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int sec^6 x tan x   "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×