मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : 1x(x3-1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`

बेरीज

उत्तर

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int (x^-4)/(x^-4x(x^3 - 1)).dx`

= `int (x^-4)/(1 - x^-3).dx` 

= `(1)/(3) int (3x^-4)/(1 - x^-3).dx`

= `(1)/(3) int (d/dx(1 - x^-3))/(1 - x^-3).dx`

= `(1)/(3)log|1 - x^-3 | + c       ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

= `(1)/(3)log|1 - 1/x^3|  + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

Alternative Method :

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int x^2/(x^3(x^3 - 1)).dx`

Put x3 = t
∴ 3x2dx = dt

∴ x2dx = `dt/(3)`

∴ I = `int (1)/(t(t -  1)).dt/(3)`

= `(1)/(3)int(1)/(t(t - 1))dt`

= `(1)/(3) int(t - (t - 1))/(t(t - 1))dt` 

= `(1)/(3) int(1/(t - 1) - 1/t)dt`

= `(1)/(3)[int (1)/(t - 1)dt - int (1)/tdt]`

= `(1)/(3)[log |t - 1| - log|t|] + c`

= `(1)/(3)log|(t - 1)/t| + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.24 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int sin^2(x/2)dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×