Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
उत्तर
\[\text{ Let 5 + tan x = t }\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int\frac{dt}{t^4}\]
\[ = \int t^{- 4} dt\]
\[ = \left[ \frac{t^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{3 t^3} + C\]
\[ = - \frac{1}{3 \left( 5t + \tan x \right)^3} + C \left( \because t = 5 + \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int (1 + x)/(x + "e"^(-x)) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int sin^3x cos^3x dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`