English

Write a Value of ∫ Sec 2 X ( 5 + Tan X ) 4 D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]

Sum

Solution

\[\text{ Let I }= \int\frac{\sec^2 x dx}{\left( 5 + \tan x \right)^4}\]
\[\text{ Let 5 + tan  x = t }\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int\frac{dt}{t^4}\]
\[ = \int t^{- 4} dt\]
\[ = \left[ \frac{t^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{3 t^3} + C\]
\[ = - \frac{1}{3 \left( 5t + \tan x \right)^3} + C \left( \because t = 5 + \tan x \right)\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 18 | Page 197

RELATED QUESTIONS

Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`1/(1 - tan x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sin x/cos^2x dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int cos sqrtx` dx = _____________


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×