Advertisements
Advertisements
Question
Integrate the functions:
`1/(1 - tan x)`
Solution
Let `I = int 1/ (1 - tan x)dx = int 1/ (1 - sin x/ cos x) dx`
`= int cos x/ (cos x - sin x) dx = 1/2 int (2 cos x)/ (cos x - sin x) dx`
`1/2 int ((cos x - sin x) - (-sin x - cos x))/(cos x - sin x)`
`1/2 int 1 dx - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx`
`x/2 - 1/2 int (-sin x - cos x)/ (cos x - sin x) dx + C_1`
`I = x/2 - 1/2 I_1 + C_1` ....(i)
Where, `I_1 = int (-sinx - cos x)/(cos x - sin x) dx`
Put cos x - sin x = t
⇒ (-sin x - cos x) dx = dt
`I_1 = int dt/t = log |t| + C_2`
= log | cos x - sin x| + C2 ...(ii)
From (i) and (ii), we get
⇒ `I = x/2 - 1/2 log |cos x - sin x| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`