Advertisements
Advertisements
Question
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Solution
`I=int_0^pix/(a^2cos^2x+b^2sin^2x) dx.............(i)`
`I=int_0^pi(pi-x)/(a^2cos^2(pi-x)+b^2sin^2(pi-x))dx`
`I=int_0^pi(pi-x)/(a^2cos^2x+b^2sin^2x)dx...........(ii)`
`int_0^a f(x) dx = int_0^a f (a - x) dx`
Adding (i) and (ii), we get
`2"I" = int_0^pi (x + pi - x)/(a^2 cos^2 x + b^2 sin^2 x) dx`
`2"I" = int _0^pi pi/(a^2 cos^2 x + b^2 sin^2 x) dx`
`2"I" = int_0^pi (pi sec^2 x )/(a^2 + b^2 tan^2 x)` ........ `1/b^2 int_0^pi (pi sec^2 x dx)/((a/b)^2 + tan^2 x)`
`2"I" = pi/b^2 int dt/(a/b)^2 + t^2` .......... `[tan x = t -> sec^2 x dx = dt]`
`2"I" = pi/b^2 [(b/a) tan^-1 (bt/a)]_0^pi`
`2"I" = pi/(ab) [tan^-1 (b/a tan x)]_0^pi`
`2"I" = pi/(ab) (0 - 0) = 0`
2 I = 0
I = 0
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int x^x (1 + logx) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`