English

∫cos2xsin2x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int (cos2x)/(sin^2x)  "d"x`

Sum

Solution

`int (cos2x)/(sin^2x)  "d"x`

= `int (1 - 2sin^2x)/(sin^2x)  "d"x`     ......[∵ cos 2θ = 1 − 2sin2θ]

= `int(1/(sin^2x) - (2sin^2x)/(sin^2x))  "d"x`

= `int ("cosec"^2x - 2)  "d"x`

= −cot x − 2x + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals:

`int x/(x + 2).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int sqrt(1 + "x"^2) "dx"` =


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (sin4x)/(cos 2x) "d"x`


`int x/(x + 2)  "d"x`


`int(log(logx))/x  "d"x`


`int x^3"e"^(x^2) "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


`int (logx)^2/x dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate `int1/(x(x - 1))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×