English

∫sin4xcos2xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int (sin4x)/(cos 2x) "d"x`

Sum

Solution

`int (sin4x)/(cos 2x) "d"x`

= `int (sin2(2x))/(cos2x) "d"x`

= `int (2sin2x cos2x)/(cos 2x) "d"x`

= `2 int sin 2x  "d"x`

= `2*((-cos 2x))/2 + c`

= – cos 2x + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following : `int (logx)2.dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int logx/x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int x/(x + 2)  "d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Write `int cotx  dx`.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×