Advertisements
Advertisements
Question
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Solution
Let I = `int sqrt((2 + x)/(2 - x)).dx`
= `int sqrt((2 + x)/(2 - x) xx (2 + x)/(2 + x)).dx`
= `int (2 + x)/sqrt(4 - x^2).dx`
= `int (2)/sqrt(4 - x^2).dx + int x/sqrt(4 - x^2).dx`
= `2 int (1)/sqrt(2^2 - x^2).dx + (1)/(2) int (2x)/sqrt(4 - x^2).dx`
= I1 + I2 ...(Let)
I1 = `2 int (1)/sqrt(2^2 - x^2).dx`
= `2 sin^-1 (x/2) + c_1`
In I2, put 4 – x2 = t
∴ – 2x dx = dt
∴ 2x dx = – dt
I2 = `-(1)/(2) int t^(-1/2) dt`
= `-(1)/(2).t^(1/2)/((1/2)) + c_2`
= `- sqrt(4 - x^2) + c_2`
I = `2 sin^-1 (x/2) - sqrt(4 - x^2) + c`.
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cos^7 x "d"x`
`int sin^-1 x`dx = ?
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`