English

Integrate the following functions w.r.t. x : 1x(x3-1) - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`

Sum

Solution

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int (x^-4)/(x^-4x(x^3 - 1)).dx`

= `int (x^-4)/(1 - x^-3).dx` 

= `(1)/(3) int (3x^-4)/(1 - x^-3).dx`

= `(1)/(3) int (d/dx(1 - x^-3))/(1 - x^-3).dx`

= `(1)/(3)log|1 - x^-3 | + c       ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

= `(1)/(3)log|1 - 1/x^3|  + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

Alternative Method :

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int x^2/(x^3(x^3 - 1)).dx`

Put x3 = t
∴ 3x2dx = dt

∴ x2dx = `dt/(3)`

∴ I = `int (1)/(t(t -  1)).dt/(3)`

= `(1)/(3)int(1)/(t(t - 1))dt`

= `(1)/(3) int(t - (t - 1))/(t(t - 1))dt` 

= `(1)/(3) int(1/(t - 1) - 1/t)dt`

= `(1)/(3)[int (1)/(t - 1)dt - int (1)/tdt]`

= `(1)/(3)[log |t - 1| - log|t|] + c`

= `(1)/(3)log|(t - 1)/t| + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


Solve: dy/dx = cos(x + y)


\[\int\sqrt{x - x^2} dx\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int cos sqrtx` dx = _____________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (logx)^2/x dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


`int secx/(secx - tanx)dx` equals ______.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×