Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Solution
Let I = `int (e^(2x) + 1)/(e^(2x) - 1).dx`
= `int (((e^(2x) + 1)/(e^x)))/(((e^(2x) - 1)/(e^x))).dx`
= `int((e^x + e^(-x))/(e^x - e^-x)).dx`
= `int (d/dx(e^x - e^-x))/(e^x - e^-x).dx`
= log|ex – e–x| + c. ...`[∵ int (f'(x))/f(x).dx= log|f(x)| + c]`
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int (logx)^2/x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int 1/(x(x-1))dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).