Advertisements
Advertisements
Question
`int secx/(secx - tanx)dx` equals ______.
Options
sec x – tan x + c
sec x + tan x + c
tan x + sec x + c
– (sec x + tan x) + c
Solution
`int secx/(secx - tanx)dx` equals tan x + sec x + c.
Explanation:
`int secx/(secx - tanx)dx = int (1/cosx)/(1/cosx - sinx/cosx)dx`
= `int dx/(1 - sin x)`
= `int 1/(1 - sinx) xx (1 + sin x)/(1 + sin x)dx`
= `int (1 + sinx)/(cos^2x)dx`
= `int sec^2 x dx + int tan x sec x dx`
= tan x + sec x + c.
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(xsin^2(logx)) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Write `int cotx dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).