Advertisements
Advertisements
Question
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Solution
Let I = `int "x"^3/(16"x"^8 - 25)` dx
Put x4 = t
∴ 4x3 dx = dt
∴ x3 dx = `1/4` dt
∴ I = `1/4 int "dt"/(16"t"^2 - 25)`
`= 1/(4 xx 16) int "dt"/("t"^2 - 25/16)`
`= 1/64 int "dt"/("t"^2 - (5/4)^2)`
`= 1/64 xx 1/(2 xx 5/4) log |("t" - 5/4)/("t" + 5/4)|` + c
`= 1/160 log |("4t" - 5)/("4t" + 5)|` + c
∴ I = = `1/160 log |(4"x"^4 - 5)/(4"x"^4 + 5)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int x^3"e"^(x^2) "d"x`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`