Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
उत्तर
Let I = `int "x"^3/(16"x"^8 - 25)` dx
Put x4 = t
∴ 4x3 dx = dt
∴ x3 dx = `1/4` dt
∴ I = `1/4 int "dt"/(16"t"^2 - 25)`
`= 1/(4 xx 16) int "dt"/("t"^2 - 25/16)`
`= 1/64 int "dt"/("t"^2 - (5/4)^2)`
`= 1/64 xx 1/(2 xx 5/4) log |("t" - 5/4)/("t" + 5/4)|` + c
`= 1/160 log |("4t" - 5)/("4t" + 5)|` + c
∴ I = = `1/160 log |(4"x"^4 - 5)/(4"x"^4 + 5)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int cos^3x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int1/(x(x - 1))dx`