हिंदी

Integrate the following function w.r.t. x: x9.sec2(x10) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following function w.r.t. x:

x9.sec2(x10)

Evaluate:

`intx^9 . sec^2 (x^10) dx`

मूल्यांकन
योग

उत्तर

Let I = `int x^9 .sec^2(x^10).dx`

Put x10 = t
∴ 10x9dx = dt

∴ x9dx = `(1)/(10)dt`

∴ I = `int sec^2t.dt/(10)`

= `1/10 int sec^2t  dt`

= `(1)/(10)tan t+ c`

= `(1)/(10)tan(x^10) + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.11 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 - tan x)`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate `int 1/((2"x" + 3))` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int logx/x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int sin^-1 x`dx = ?


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int (logx)^2/x dx` = ______.


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×