Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
उत्तर
Let I = `int 1/(2"x" + 3"x" * log"x")` dx
`= int 1/("x"(2 + 3 log "x"))` dx
Put 2 + 3 log x = t
∴ `3 * 1/"x" "dx"` = dt
∴ `1/"x" "dx" = 1/3 "dt"`
∴ I = `1/3 int 1/"t" * "dt"`
`= 1/3` log |t| + c
∴ I = `1/3` log |2 + 3 log x| + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`1/(1 + cot x)`
Write a value of\[\int \log_e x\ dx\].
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate: ∫ |x| dx if x < 0
`int(log(logx))/x "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int1/(x(x - 1))dx`