हिंदी

Integrate the following functions w.r.t. x : 7+4+5x2(2x+3)32 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`

योग

उत्तर

Let I = `int(7 + 4x +5x^2)/(2x + 3)^(3/2).dx`

= `int(5x^2 + 4x + 7)/(2x + 3)^(3/2).dx`

Put 2x + 3 = t

∴ 2dx = dt

∴ dx = `dt/(2)`

Also, x = `(t - 3)/(2)`

∴ I = `int(5((t - 3)/2)^2 + 4((t - 3)/2) + 7)/t^(3/2).dt/(2)`

= `(1)/(2) int(5((t^2 -  6t  +  9)/4) + 2(t - 3) + 7)/t^(3/2)dt`

= `(1)/(2)int (5t^2 - 30t + 45 + 8t - 24 + 28)/(4t^(3/2))dt`

= `(1)/(8)int(5t^2 - 22t + 49)/t^(3/2)dt`

= `(1)/(8)int(5t^(1/2) - 22t^(-1/2) + 49t^(-3/2))dt`

= `(5)/(8)intt^(1/2)dt - 22/8 int t^(-1/2)dt + 49/8 int t^(-3/2)dt`

= `(5)/(8).t^(3/2)/((3/2)) - (11)/(4).t^(1/2)/((1/2))  + (49)/(8).t^(-1/2)/((-1/2)) + c`

= `(5)/(12)(2x+ 3)^(3/2) - (11)/(2)sqrt(2x + 3) - (49)/(4).(1)/sqrt(2x + 3) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.22 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int a^x e^x \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


`int 1/(cos x - sin x)` dx = _______________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x/(x + 2)  "d"x`


`int cos^7 x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Write `int cotx  dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int (1)/(x(x - 1))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int 1/(x(x-1))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×