हिंदी

Find : ∫ Sin 2 X ( Sin 2 X + 1 ) ( Sin 2 X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`

योग

उत्तर १

` I =  int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`

` int  ( 2 sin x cos x  ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`

put t = sinx

`dt/dx = 2 ` sin x cos x 

⇒ dt = 2 sin x cos dx 

⇒ I = `int  dt/ (( t + 1 )( t + 3) ) dt `

` I = 1/2 [ int 1/(t + 1) dt - int 1/(( t + 3 )) dt ] `

` I = 1/2 [  "In" ( 1+ t) - "In" (3+t)] + C` 

`I = 1/2 "In" ((1+t)/(3 +t)) + C`

`⇒ I = 1/2 " In" ((1 + sin^2 x ) /( 3 + sin^2 x ) ) +  c `

shaalaa.com

उत्तर २

`int_  (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`

⇒ `I  = int_  (2sin"x"·cos"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`

let sin2 x + 3 = t ⇒ 2sin x·cos xdx = dt

Therefore,

`I = int_  (d"t")/(("t" - 2)"t")`

⇒ `I = 1/2 int_  ((1)/("t"-2)- 1/"t")d"t"`

⇒ `I = 1/2 [ "In" ( "t" -2) - "In"  "t"] + c`

⇒ `I = 1/2 "In" (("t"-2)/("t")) + c`

⇒ `I =  "In" sqrt(("t"-2)/("t")) + c`

⇒ `I = "In" sqrt((sin^2 "x" +1)/(sin^2 "x"+3)) + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×