Advertisements
Advertisements
प्रश्न
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
उत्तर १
` I = int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
` int ( 2 sin x cos x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
put t = sin2 x
`dt/dx = 2 ` sin x cos x
⇒ dt = 2 sin x cos dx
⇒ I = `int dt/ (( t + 1 )( t + 3) ) dt `
` I = 1/2 [ int 1/(t + 1) dt - int 1/(( t + 3 )) dt ] `
` I = 1/2 [ "In" ( 1+ t) - "In" (3+t)] + C`
`I = 1/2 "In" ((1+t)/(3 +t)) + C`
`⇒ I = 1/2 " In" ((1 + sin^2 x ) /( 3 + sin^2 x ) ) + c `
उत्तर २
`int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
⇒ `I = int_ (2sin"x"·cos"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
let sin2 x + 3 = t ⇒ 2sin x·cos xdx = dt
Therefore,
`I = int_ (d"t")/(("t" - 2)"t")`
⇒ `I = 1/2 int_ ((1)/("t"-2)- 1/"t")d"t"`
⇒ `I = 1/2 [ "In" ( "t" -2) - "In" "t"] + c`
⇒ `I = 1/2 "In" (("t"-2)/("t")) + c`
⇒ `I = "In" sqrt(("t"-2)/("t")) + c`
⇒ `I = "In" sqrt((sin^2 "x" +1)/(sin^2 "x"+3)) + c`
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`