हिंदी

Find the Value of λ for Which the Following Lines Are Perpendicular to Each Other: X − 5 5 λ + 2 = 2 − Y 5 = 1 − Z − 1 ; X 1 = Y + 1 2 2 λ = Z − 1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of  λ for which the following lines are perpendicular to each other: 

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`

योग

उत्तर

`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3` 

`(x - 5)/(5 lambda + 2 ) = ( y -2)/-5 = (z - 1)/ 1 ; x/1 =  ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`

Direction vectors of line are 

`(5 lambda  + 2 ) hat (i) - 5 hat (j) + hat ( k)  " and  hat (i) + 2 lambda hat(j)+ 3 hat ( k) ` 

Lines are perpendicular 

∴ there dot product = 0

⇒ ( 5λ + 2) .1-5.(2λ ) + 1.3 = 0

5λ + 2 - 10λ +3 = 0

-5λ + 5 = 0

-5λ =- 5

`λ = (-5)/-5` 

λ = 1 

Put λ = 1 

`(x - 5 ) / 7 = ( y -2 )/-5 = (z - 1) /1 = t `

⇒ x = 7t + 5 , y = -5t + 2 , z = t +1

`x/1 = (y + 1/2 )/2 = (z-1)/3 = s`

x = s ; y =2s -`1/2` , z = 3s + 1

It lines are intersecting their x, y and z coordinate will be same equaiting x

⇒ 7t + 5 = s

      s - 7t = 5         .......(i)

      Equating z 

  t + 1 = 3s + 1

  t  =  3s             .......... (ii)

 s  - 21s  =   5  

`s = - 1/4      t = -3/4`

Now for first line

`y = -5t + 2 = - 15/4 + 2 = - 23/4`

For second line 

`y = 2s -1/5 = 2 xx (-1)/4 - 1/2 = -1`

y co-ordinates are not equal
so the lines are not intersecting.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.


Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\]  at a distance of 5 units from the point P (1, 3, 3).


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the equation of the perpendicular drawn from the point P (−1, 3, 2) to the line  \[\overrightarrow{r} = \left( 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + \hat{j} + 3 \hat{k}  \right) .\]  Also, find the coordinates of the foot of the perpendicular from P.


Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).      


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]


Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and }  \overrightarrow{r} = - 4 \hat{i}  - \hat{k}  + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k}  \right)\]


Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.

 

Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


Choose correct alternatives:

If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


If 2x + y = 0 is one of the line represented by 3x2 + kxy + 2y2 = 0 then k = ______ 


If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______ 


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×