Advertisements
Advertisements
प्रश्न
Write the vector equations of the following lines and hence determine the distance between them \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]
उत्तर
We have
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6}\]
\[\frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]
Since the first line passes through the point (1, 2, -4) and has direction ratios proportional to 2, 3, 6, its vector equation is
\[\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} . . . (1) \]
\[ \Rightarrow \overrightarrow{r} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]
Also, the second line passes through the point (3, 3, -5) and has direction ratios proportional to 4, 6, 12.
Its vector equation is
\[\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2} . . . (2) \]
\[ \Rightarrow \overrightarrow{r} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + \mu\left( 4 \hat{i} + 6 \hat{j} + 12 \hat{k} \right)\]
\[ \Rightarrow \overrightarrow{r} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + 2\mu\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]
These two lines pass through the points having position vectors \[\overrightarrow{a_1} = \hat{i} + 2 \hat{j} - 4 \hat{k} \text{ and }\overrightarrow{a_2} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} \] and are parallel to the vector
\[\overrightarrow{b} = 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \]
Now,
\[\overrightarrow{a_2} - \overrightarrow{a_1} = 2 \hat{i} + \hat{j} - \hat{k}\]
and
\[\left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) \times \left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\]
\[ = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & - 1 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = 9 \hat{i} - 14 \hat{j} + 4 \hat{k} \]
\[ \Rightarrow \left| \left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} \right| = \sqrt{9^2 + \left( - 14 \right)^2 + 4^2}\]
\[ = \sqrt{81 + 196 + 16}\]
\[ = \sqrt{293}\]
\[\text{ and }\left| \overrightarrow{b} \right| = \sqrt{2^2 + 3^2 + 6^2}\]
\[ = \sqrt{4 + 9 + 36}\]
\[ = 7\]
The shortest distance between the two lines is given by
\[\frac{\left| \left( \overrightarrow{a_2} - \overrightarrow{a_1} \right) \times \overrightarrow{b} \right|}{\left| \overrightarrow{b} \right|} = \frac{\sqrt{293}}{7} \text{ units } \]
APPEARS IN
संबंधित प्रश्न
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.
Find the vector and cartesian equations of the line passing through the point (2, 1, 3) and perpendicular to the lines
`(x-1)/1=(y-2)/2=(z-3)/3 and x/(-3)=y/2=z/5`
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\] Find a vector equation for the line.
Find the vector equation of a line passing through the point with position vector \[\hat{i} - 2 \hat{j} - 3 \hat{k}\] and parallel to the line joining the points with position vectors \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]
Find the angle between the following pair of line:
\[\frac{5 - x}{- 2} = \frac{y + 3}{1} = \frac{1 - z}{3} \text{ and } \frac{x}{3} = \frac{1 - y}{- 2} = \frac{z + 5}{- 1}\]
Find the angle between the following pair of line:
\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{ and } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]
Find the equation of the line passing through the point \[\hat{i} + \hat{j} - 3 \hat{k} \] and perpendicular to the lines \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + \hat{j} - 3 \hat{k} \right) \text { and } \overrightarrow{r} = \left( 2 \hat{i} + \hat{j} - \hat{ k} \right) + \mu\left( \hat{i} + \hat{j} + \hat{k} \right) .\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
Show that the lines \[\frac{x - 1}{3} = \frac{y + 1}{2} = \frac{z - 1}{5} \text{ and } \frac{x + 2}{4} = \frac{y - 1}{3} = \frac{z + 1}{- 2}\] do not intersect.
Find the perpendicular distance of the point (1, 0, 0) from the line \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.
Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]
Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD.
Find the distance of the point (2, 4, −1) from the line \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9}\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \lambda - 1 \right) \hat{i} + \left( \lambda + 1 \right) \hat{j} - \left( 1 + \lambda \right) \hat{k} \text{ and } \overrightarrow{r} = \left( 1 - \mu \right) \hat{i} + \left( 2\mu - 1 \right) \hat{j} + \left( \mu + 2 \right) \hat{k} \]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]
Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]
By computing the shortest distance determine whether the following pairs of lines intersect or not : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]
Write the cartesian and vector equations of Y-axis.
Write the cartesian and vector equations of Z-axis.
Write the angle between the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z - 2}{1} \text{ and } \frac{x - 1}{1} = \frac{y}{2} = \frac{z - 1}{3} .\]
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
The shortest distance between the lines \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\]
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].
If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then
The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______
Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.
Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.