हिंदी

Find the Equation of a Plane Which Passes Through the Point (3, 2, 0) and Contains the Line X − 3 1 = Y − 6 5 = Z − 4 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

उत्तर

Let \[\vec{a}\] be the position vector of the point (3, 2, 0). \[\therefore \vec{a} = 3 \hat{i} + 2 \hat{j}\] The line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] passes through the point (3, 6, 4) and is parallel to the vector \[\hat{i} + 5 \hat{j} + 4 \hat{k}\] .

Suppose

\[\vec{b} = 3 \hat{i} + 6 \hat{j} + 4 \hat{k}\]

\[\vec{c} = \hat{i} + 5 \hat{j} + 4 \hat{k}\]

Let \[\vec{N}\]

be the vector normal to the required plane.

\[\therefore \vec{N} = \left( \vec{b} - \vec{a} \right) \times \vec{c} \]

\[ = \left[ \left( 3 \hat{i} + 6 \hat{j} + 4 {k} \right) - \left( 3 \hat {i} + 2 \hat{j} \right) \right] \times \left( \hat{i} + 5 \hat{j} + 4 \hat{k} \right)\]

\[ = \left( 4 \hat{j} + 4 \hat{k} \right) \times \left( \hat{i} + 5 \hat{j} + 4 \hat{k} \right)\]

\[ = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k}\\ 0 & 4 & 4 \\ 1 & 5 & 4\end{vmatrix}\]

\[ = - 4 \hat{i} + 4 \hat{j}- 4 \hat{k}\]

So, the required plane passes through the point 

\[\vec{a} = 3 \hat{i} + 2 \hat{j}\] and is perpendicular to the vector
\[\vec{N} = - 4 \hat{i} + 4 \hat{j} - 4 \hat{k}\] .
∴ Equation of the required plane is given by

\[\left( \vec{r} - \vec{a} \right) \cdot \vec{N} = 0\]

\[ \Rightarrow \left[ \left( x \hat{i}+ y \hat{j} + z\hat{k} \right) - \left( 3 \hat{i} + 2\hat{ j}\right) \right] \cdot \left( - 4 \hat{i} + 4 {j} - 4 \hat{k} \right) = 0\]

\[ \Rightarrow \left[ \left( x - 3 \right) {i}+ \left( y - 2 \right) \hat{j} + z \hat{k} \right] \cdot \left( - 4 \hat{i} + 4 \hat{j} - 4 \hat{k} \right) = 0\]

\[ \Rightarrow - 4\left( x - 3 \right) + 4\left( y - 2 \right) - 4z = 0\]

\[ \Rightarrow x - 3 - y + 2 + z = 0\]

\[ \Rightarrow x - y + z = 1\]

Thus, the equation of the required plane is x − y + z = 1.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


The Cartesian equations of line are 3x+1=6y-2=1-z find its equation in vector form.

 


Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


Find the vector equation for the line which passes through the point (1, 2, 3) and parallel to the vector \[\hat{i} - 2 \hat{j} + 3 \hat{k} .\]  Reduce the corresponding equation in cartesian from.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


The cartesian equations of a line are x = ay + bz = cy + d. Find its direction ratios and reduce it to vector form. 


Show that the points whose position vectors are  \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k}  \text{ and }  7 \text{ i}  - \text{ k} \]  are collinear.


Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \left( 4 \hat{i} - \hat{j} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text{ and }\overrightarrow{r} = \hat{i} - \hat{j} + 2 \hat{k} - \mu\left( 2 \hat{i} + 4 \hat{j} - 4 \hat{k} \right)\]


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the following pair of line:

\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{  and  } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]


Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]


Write the cartesian and vector equations of X-axis.

 

Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\]  is  perpendicular.


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to


Choose correct alternatives:

If the equation 4x2 + hxy + y2 = 0 represents two coincident lines, then h = _______


The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.


Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, – 6), Q(5, – 3, 1), R(12, 4, 5) and S(11, 9, – 2). Use these equations to find the point of intersection of diagonals.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×