मराठी

Find the Equation of a Plane Which Passes Through the Point (3, 2, 0) and Contains the Line X − 3 1 = Y − 6 5 = Z − 4 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].

 

उत्तर

Let \[\vec{a}\] be the position vector of the point (3, 2, 0). \[\therefore \vec{a} = 3 \hat{i} + 2 \hat{j}\] The line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] passes through the point (3, 6, 4) and is parallel to the vector \[\hat{i} + 5 \hat{j} + 4 \hat{k}\] .

Suppose

\[\vec{b} = 3 \hat{i} + 6 \hat{j} + 4 \hat{k}\]

\[\vec{c} = \hat{i} + 5 \hat{j} + 4 \hat{k}\]

Let \[\vec{N}\]

be the vector normal to the required plane.

\[\therefore \vec{N} = \left( \vec{b} - \vec{a} \right) \times \vec{c} \]

\[ = \left[ \left( 3 \hat{i} + 6 \hat{j} + 4 {k} \right) - \left( 3 \hat {i} + 2 \hat{j} \right) \right] \times \left( \hat{i} + 5 \hat{j} + 4 \hat{k} \right)\]

\[ = \left( 4 \hat{j} + 4 \hat{k} \right) \times \left( \hat{i} + 5 \hat{j} + 4 \hat{k} \right)\]

\[ = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k}\\ 0 & 4 & 4 \\ 1 & 5 & 4\end{vmatrix}\]

\[ = - 4 \hat{i} + 4 \hat{j}- 4 \hat{k}\]

So, the required plane passes through the point 

\[\vec{a} = 3 \hat{i} + 2 \hat{j}\] and is perpendicular to the vector
\[\vec{N} = - 4 \hat{i} + 4 \hat{j} - 4 \hat{k}\] .
∴ Equation of the required plane is given by

\[\left( \vec{r} - \vec{a} \right) \cdot \vec{N} = 0\]

\[ \Rightarrow \left[ \left( x \hat{i}+ y \hat{j} + z\hat{k} \right) - \left( 3 \hat{i} + 2\hat{ j}\right) \right] \cdot \left( - 4 \hat{i} + 4 {j} - 4 \hat{k} \right) = 0\]

\[ \Rightarrow \left[ \left( x - 3 \right) {i}+ \left( y - 2 \right) \hat{j} + z \hat{k} \right] \cdot \left( - 4 \hat{i} + 4 \hat{j} - 4 \hat{k} \right) = 0\]

\[ \Rightarrow - 4\left( x - 3 \right) + 4\left( y - 2 \right) - 4z = 0\]

\[ \Rightarrow x - 3 - y + 2 + z = 0\]

\[ \Rightarrow x - y + z = 1\]

Thus, the equation of the required plane is x − y + z = 1.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Find the vector equation of the lines which passes through the point with position vector `4hati - hatj +2hatk` and is in the direction of `-2hati + hatj + hatk`


Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).


Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]


Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.


Show that the points whose position vectors are  \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k}  \text{ and }  7 \text{ i}  - \text{ k} \]  are collinear.


Find the angle between the following pair of line:

\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text  { and }  \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]


Find the angle between the following pair of line:

\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]


Find the equation of the line passing through the point  \[\hat{i}  + \hat{j}  - 3 \hat{k} \] and perpendicular to the lines  \[\overrightarrow{r} = \hat{i}  + \lambda\left( 2 \hat{i} + \hat{j}  - 3 \hat{k}  \right) \text { and }  \overrightarrow{r} = \left( 2 \hat{i}  + \hat{j}  - \hat{ k}  \right) + \mu\left( \hat{i}  + \hat{j}  + \hat{k}  \right) .\]

  

 

 

 


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines \[\vec{r} = 3 \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right) \text{ and } \vec{r} = 5 \hat{i} - 2 \hat{j}  + \mu\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] are intersecting. Hence, find their point of intersection.


Find the perpendicular distance of the point (1, 0, 0) from the line  \[\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z + 10}{8}.\] Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.


Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3). 


Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.


Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2) 


Write the cartesian and vector equations of Y-axis.

 

Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The lines `x/1 = y/2 = z/3 and (x - 1)/-2 = (y - 2)/-4 = (z - 3)/-6` are


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


Find the separate equations of the lines given by x2 + 2xy tan α − y2 = 0 


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×