Advertisements
Advertisements
प्रश्न
Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.
उत्तर
Let L be the foot of the perpendicular drawn from the point P (2, 3, 4) to the given line.
The coordinates of a general point on the line
\[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3}\] are given by
\[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} = \lambda\]
\[\text{ They can be re - written as } \]
\[\frac{x - 4}{- 2} = \frac{y}{6} = \frac{z - 1}{- 3} = \lambda\]
\[ \Rightarrow x = - 2\lambda + 4\]
\[ y = 6\lambda\]
\[ z = - 3\lambda + 1\]
Let the coordinates of L be
\[\left( - 2\lambda + 4, 6\lambda, - 3\lambda + 1 \right)\]
The direction ratios of PL are proportional to
\[- 2\lambda + 4 - 2, 6\lambda - 3, - 3\lambda + 1 - 4, i . e . - 2\lambda + 2, 6\lambda - 3, - 3\lambda - 3\]
The direction ratios of the given line are proportional to -2,6,-3, but PL is perpendicular to the given line.
\[\therefore - 2\left( - 2\lambda + 2 \right) + 6\left( 6\lambda - 3 \right) - 3\left( - 3\lambda - 3 \right) = 0\]
\[ \Rightarrow \lambda = \frac{13}{49}\]
Substituting
\[ \Rightarrow \lambda = \frac{13}{49}\] in
\[\left( - 2\lambda + 4, 6\lambda, - 3\lambda + 1 \right)\] we get the coordinates of L as
\[\left( \frac{170}{49}, \frac{78}{49}, \frac{10}{49} \right)\]
\[\therefore PL = \sqrt{\left( \frac{170}{49} - 2 \right)^2 + \left( \frac{78}{49} - 3 \right)^2 + \left( \frac{10}{49} - 4 \right)^2}\]
\[ = \sqrt{\frac{44541}{2401}}\]
\[ = \sqrt{\frac{909}{49}}\]
\[ = \frac{3}{7}\sqrt{101}\]
Hence, the length of the perpendicular from P on PL is
\[\frac{3}{7}\sqrt{101} \text{ units } \] .
APPEARS IN
संबंधित प्रश्न
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
If the Cartesian equations of a line are ` (3-x)/5=(y+4)/7=(2z-6)/4` , write the vector equation for the line.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.
Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.
Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\] and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.
A line passes through the point with position vector \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \] and is in the direction of \[3 \hat{i} + 4 \hat{j} - 5 \hat{k} .\] Find equations of the line in vector and cartesian form.
ABCD is a parallelogram. The position vectors of the points A, B and C are respectively, \[4 \hat{ i} + 5 \hat{j} -10 \hat{k} , 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and } - \hat{i} + 2 \hat{j} + \hat{k} .\] Find the vector equation of the line BD. Also, reduce it to cartesian form.
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\] at a distance of 5 units from the point P (1, 3, 3).
Show that the points whose position vectors are \[- 2 \hat{i} + 3 \hat{j} , \hat{i} + 2 \hat{j} + 3 \hat{k} \text{ and } 7 \text{ i} - \text{ k} \] are collinear.
The cartesian equation of a line are 3x + 1 = 6y − 2 = 1 − z. Find the fixed point through which it passes, its direction ratios and also its vector equation.
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).
Find the cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by \[\frac{x + 3}{3} = \frac{y - 4}{5} = \frac{z + 8}{6} .\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{ and } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{ and } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\] intersect. Find their point of intersection.
Find the length of the perpendicular drawn from the point (5, 4, −1) to the line \[\overrightarrow{r} = \hat{i} + \lambda\left( 2 \hat{i} + 9 \hat{j} + 5 \hat{k} \right) .\]
Find the equation of line passing through the points A (0, 6, −9) and B (−3, −6, 3). If D is the foot of perpendicular drawn from a point C (7, 4, −1) on the line AB, then find the coordinates of the point D and the equation of line CD.
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
Find the shortest distance between the lines \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + \hat{k} \right) + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} - \hat{j} - \hat{k} + \mu\left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right)\]
Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = - 4 \hat{i} - \hat{k} + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k} \right)\]
Write the cartesian and vector equations of Z-axis.
The direction ratios of the line perpendicular to the lines \[\frac{x - 7}{2} = \frac{y + 17}{- 3} = \frac{z - 6}{1} \text{ and }, \frac{x + 5}{1} = \frac{y + 3}{2} = \frac{z - 4}{- 2}\] are proportional to
The equation of the line passing through the points \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] is
If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\].
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______
P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.