Advertisements
Advertisements
प्रश्न
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
उत्तर
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
The equations of the given lines can be re-written as
\[\frac{x - 5}{1} = \frac{y + 3}{- 1} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Let
\[\overrightarrow { b_1}\] and \[\overrightarrow { b_2}\] be vectors parallel to the given lines.
Now,
\[\overrightarrow{b_1} = \hat{i} - \hat{j} + \hat{k} \]
\[ \overrightarrow{b_2} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \]
If θ is the angle between the given lines, then
\[\cos \theta = \frac{\overrightarrow{b_1} . \overrightarrow{b_2}}{\left| \overrightarrow{b_1} \right| \left| \overrightarrow{b_2} \right|}\]
\[ = \frac{\left( \hat{i} - \hat{j} + \hat{k} \right) . \left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)}{\sqrt{1^2 + \left( - 1 \right)^2 + 1^2} \sqrt{3^2 + 4^2 + 5^2}}\]
\[ = \frac{3 - 4 + 5}{\sqrt{3} \sqrt{50}}\]
\[ = \frac{4}{5\sqrt{6}}\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{4}{5\sqrt{6}} \right)\]
Disclaimer: The answer given in the book is incorrect. This solution is created according to the question given in the book.
APPEARS IN
संबंधित प्रश्न
The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.
The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.
Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.
`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`
Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
The cartesian equations of a line are x = ay + b, z = cy + d. Find its direction ratios and reduce it to vector form.
Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\]
Show that the line through the points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and, (1, 2, 5).
Find the equation of a line parallel to x-axis and passing through the origin.
Find the angle between the following pair of line:
\[\frac{x + 4}{3} = \frac{y - 1}{5} = \frac{z + 3}{4} \text { and } \frac{x + 1}{1} = \frac{y - 4}{1} = \frac{z - 5}{2}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the other one is obtained by joining the points (3, 1, 4) and (7, 2, 12).
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
Show that the lines \[\frac{x}{1} = \frac{y - 2}{2} = \frac{z + 3}{3} \text{ and } \frac{x - 2}{2} = \frac{y - 6}{3} = \frac{z - 3}{4}\] intersect and find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{3} = \frac{y - 1}{- 1} = \frac{z + 1}{0} and \frac{x - 4}{2} = \frac{y - 0}{0} = \frac{z + 1}{3}\]
Determine whether the following pair of lines intersect or not:
\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.
Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 3 \hat{i} + 5 \hat{j} + 7 \hat{k} \right) + \lambda\left( \hat{i} - 2 \hat{j} + 7 \hat{k} \right) \text{ and } \overrightarrow{r} = - \hat{i} - \hat{j} - \hat{k} + \mu\left( 7 \hat{i} - 6 \hat{j} + \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} + 4 \hat{j} + 5 \hat{k} \right) + \mu\left( 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 8 + 3\lambda \right) \hat{i} - \left( 9 + 16\lambda \right) \hat{j} + \left( 10 + 7\lambda \right) \hat{k} \]\[\overrightarrow{r} = 15 \hat{i} + 29 \hat{j} + 5 \hat{k} + \mu\left( 3 \hat{i} + 8 \hat{j} - 5 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Write the cartesian and vector equations of Z-axis.
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.
Write the condition for the lines \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.
The cartesian equations of a line AB are \[\frac{2x - 1}{\sqrt{3}} = \frac{y + 2}{2} = \frac{z - 3}{3} .\] Find the direction cosines of a line parallel to AB.
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
The lines \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \text { and } \frac{x - 1}{- 2} = \frac{y - 2}{- 4} = \frac{z - 3}{- 6}\]
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
Equation of a line passing through (1, 1, 1) and parallel to z-axis is ______.
A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.