Advertisements
Advertisements
प्रश्न
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
उत्तर
Given lines are `(1-x)/(3) = (7y -14)/(λ) = (z -3)/(2) and (7 -7x)/(3λ) = (y - 5)/(1) = (6 -z)/(5)`
Converting them into standard form, we have `(x - 1)/(-3) = ("y" - 2)/((λ/7)) = (z - 3)/(2) and (x-1)/((-3λ/7)) = (y - 5)/(1) = (z -6)/(-5)`
Corresponding d.r.'s are `(-3, λ/7, 2) and ((-3λ)/7, 1, -5)`
Since the angle between the lines is right angle so, cos 90° = `|((-3) ((-3λ)/7) + (λ/7) (1) + (2) (-5))/(sqrt((-3)^2 + (λ/7)^2 + 2^2) sqrt(((-3λ)/7)^2+ 1^2 + (-5)^2)))|`
⇒ 0 = `|(9λ/7 + λ/7 - 10)/(sqrt(λ^2/49 + 13) sqrt((9λ^2)/49 + 26)) |`
Squaring and cross-multiplying
⇒ `(10λ/7 - 10)^2 = 0`
⇒ `(10λ)/(7) = 10`
⇒ λ = 7.
Substituting the value λ, of the lines are ` (x - 1)/(-3) = (y - 2)/(1) = (z - 3)/(2)` = a (let) and `(x-1)/(-3) = (y - 5)/(1) = (z -6)/(-5)` = b (let)
From first equation, `(x, y, z) = ( -3a + 1 ,a + 2, 2a+ 3) and "from second equation", (x, y, z) = (-3b + 1, b + 5, -5b + 6)`
Equating the corresponding values of coordinates, we have
- 3a + 1 = - 3b + 1, a + 2 = b + 5 and 2a + 3 = -5b + 6
Or, - 3a + 3b = 0, a - b = 3 and 2a + 5b = 3
Solving the second and third equations of the above, we get a `= (18)/(7)` and b` = (-3)/(7)`
Substituting these values of a and b in the first one
`-3 (18/7) + 3 (-3)/(7) = -9`
Thus, it is clear that the first equation is not satisfied so the lines are not intersecting.
संबंधित प्रश्न
If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.
A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from.
Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector `3hati+2hatj-2hatk`.
Find the Cartesian equation of the line which passes through the point (−2, 4, −5) and parallel to the line given by `(x+3)/3 = (y-4)/5 = (z+8)/6`.
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]
The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\] Find a vector equation for the line.
Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular.
Find the angle between the following pair of line:
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the following pair of line:
\[\frac{- x + 2}{- 2} = \frac{y - 1}{7} = \frac{z + 3}{- 3} \text{ and } \frac{x + 2}{- 1} = \frac{2y - 8}{4} = \frac{z - 5}{4}\]
Find the angle between the pairs of lines with direction ratios proportional to 2, 2, 1 and 4, 1, 8 .
Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\]
Find the equation of the line passing through the point (2, −1, 3) and parallel to the line \[\overrightarrow{r} = \left( \hat{i} - 2 \hat{j} + \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} - 5 \hat{k} \right) .\]
Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{ and } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\] are perpendicular, find the value of λ.
Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).
Find the shortest distance between the following pairs of lines whose vector are: \[\overrightarrow{r} = \left( \hat{i} + \hat{j} \right) + \lambda\left( 2 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } , \overrightarrow{r} = 2 \hat{i} + \hat{j} - \hat{k} + \mu\left( 3 \hat{i} - 5 \hat{j} + 2 \hat{k} \right)\]
Find the shortest distance between the following pairs of lines whose cartesian equations are : \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{3} = \frac{y - 2}{1}; z = 2\]
Find the shortest distance between the lines \[\overrightarrow{r} = \hat{i} + 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - 3 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 4 \hat{i} + 5 \hat{j} + 6 \hat{k} + \mu\left( 2 \hat{i} + 3 \hat{j} + \hat{k} \right)\]
Find the shortest distance between the lines \[\overrightarrow{r} = 6 \hat{i} + 2 \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = - 4 \hat{i} - \hat{k} + \mu\left( 3 \hat{i} - 2 \hat{j} - 2 \hat{k} \right)\]
Write the cartesian and vector equations of X-axis.
Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
Choose correct alternatives:
The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2
Find the joint equation of pair of lines through the origin which is perpendicular to the lines represented by 5x2 + 2xy - 3y2 = 0