Advertisements
Advertisements
प्रश्न
Write the cartesian and vector equations of X-axis.
उत्तर
Since x-axis passes through the the point (0, 0, 0) having position vector \[\overrightarrow{a} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} \] and is parallel to the vector \[\overrightarrow{b} = 1 \hat{i} + 0 \hat{j} + 0 \hat{k} \] having direction ratios proportional to 1, 0, 0
the cartesian equation of x-axis is ,
\[\frac{x - 0}{1} = \frac{y - 0}{0} = \frac{z - 0}{0}\]
\[ = \frac{x}{1} = \frac{y}{0} = \frac{z}{0}\]
Also, its vector equation is
\[\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b} \]
\[ = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} + \lambda\left( \hat{i} + 0 \hat{j} + 0 \hat{k} \right)\]
\[ = \lambda \hat{i} \]
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.
Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
Find the vector equation of a line passing through (2, −1, 1) and parallel to the line whose equations are \[\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3} .\]
The cartesian equations of a line are x = ay + b, z = cy + d. Find its direction ratios and reduce it to vector form.
Find the cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line \[\frac{- x - 2}{1} = \frac{y + 3}{7} = \frac{2z - 6}{3} .\]
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.
Find the angle between the following pair of line:
\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]
Find the equation of the line passing through the point (1, 2, −4) and parallel to the line \[\frac{x - 3}{4} = \frac{y - 5}{2} = \frac{z + 1}{3} .\]
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\] are perpendicular, find the value of λ.
Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]
Find the direction cosines of the line
\[\frac{x + 2}{2} = \frac{2y - 7}{6} = \frac{5 - z}{6}\] Also, find the vector equation of the line through the point A(−1, 2, 3) and parallel to the given line.
Find the perpendicular distance of the point (3, −1, 11) from the line \[\frac{x}{2} = \frac{y - 2}{- 3} = \frac{z - 3}{4} .\]
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the foot of perpendicular from the point (2, 3, 4) to the line \[\frac{4 - x}{2} = \frac{y}{6} = \frac{1 - z}{3} .\] Also, find the perpendicular distance from the given point to the line.
Find the equation of the perpendicular drawn from the point P (2, 4, −1) to the line \[\frac{x + 5}{1} = \frac{y + 3}{4} = \frac{z - 6}{- 9} .\] Also, write down the coordinates of the foot of the perpendicular from P.
Find the foot of the perpendicular drawn from the point \[\hat{i} + 6 \hat{j} + 3 \hat{k} \] to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) .\] Also, find the length of the perpendicular
Find the foot of the perpendicular from (0, 2, 7) on the line \[\frac{x + 2}{- 1} = \frac{y - 1}{3} = \frac{z - 3}{- 2} .\]
Find the foot of the perpendicular from (1, 2, −3) to the line \[\frac{x + 1}{2} = \frac{y - 3}{- 2} = \frac{z}{- 1} .\]
Find the shortest distance between the following pairs of lines whose vector equations are: \[\overrightarrow{r} = \left( 1 - t \right) \hat{i} + \left( t - 2 \right) \hat{j} + \left( 3 - t \right) \hat{k} \text{ and } \overrightarrow{r} = \left( s + 1 \right) \hat{i} + \left( 2s - 1 \right) \hat{j} - \left( 2s + 1 \right) \hat{k} \]
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2)
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the direction cosines of the line \[\frac{x - 2}{2} = \frac{2y - 5}{- 3}, z = 2 .\]
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
The perpendicular distance of the point P (1, 2, 3) from the line \[\frac{x - 6}{3} = \frac{y - 7}{2} = \frac{z - 7}{- 2}\] is
If a line makes angles α, β and γ with the axes respectively, then cos 2 α + cos 2 β + cos 2 γ =
The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are
The shortest distance between the lines \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\]
Find the value of λ for which the following lines are perpendicular to each other:
`(x - 5)/(5 lambda + 2 ) = ( 2 - y )/5 = (1 - z ) /-1 ; x /1 = ( y + 1/2)/(2 lambda ) = ( z -1 ) / 3`
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
Find the vector equation of the lines passing through the point having position vector `(-hati - hatj + 2hatk)` and parallel to the line `vecr = (hati + 2hatj + 3hatk) + λ(3hati + 2hatj + hatk)`.
A line passes through the point (2, – 1, 3) and is perpendicular to the lines `vecr = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `vecr = (2hati - hatj - 3hatk) + μ(hati + 2hatj + 2hatk)` obtain its equation.