मराठी

Find the Foot of the Perpendicular Drawn from the Point ^ I + 6 ^ J + 3 ^ K to the Line → R = ^ J + 2 ^ K + λ ( ^ I + 2 ^ J + 3 ^ K ) . Also, Find the Length of the Perpendicular - Mathematics

Advertisements
Advertisements

प्रश्न

Find the foot of the perpendicular drawn from the point  \[\hat{i} + 6 \hat{j} + 3 \hat{k} \]  to the line  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\]  Also, find the length of the perpendicular

बेरीज

उत्तर

Let L be the foot of the perpendicular drawn from the point P ( \[\hat{i} + 6 \hat{j} + 3 \hat{k}\] ) to the line \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i} + 2 \hat{j} + 3 \hat{k}  \right) .\] 

Let the position vector L be  \[\overrightarrow{r} = \hat{j} + 2 \hat{k} + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) = \lambda \hat{i} + \left( 1 + 2\lambda \right) \hat{j} + \left( 2 + 3\lambda \right) \hat{k} \] 

Now, 

\[\overrightarrow{PL} = \text{ Position vector of L - Position vector of P } \]

\[ \Rightarrow \overrightarrow{PL} = \left\{ \lambda \hat{i} + \left( 1 + 2\lambda \right) \hat{j} + \left( 2 + 3\lambda \right) \hat{k} \right\} - \left( \hat{i}  + 6 \hat{j}  + 3 \hat{k}  \right)\]

\[ \Rightarrow \overrightarrow{PL} = \left( \lambda - 1 \right) \hat{i} + \left( 2\lambda - 5 \right) \hat{j} + \left( 3\lambda - 1 \right) \hat{k} . . . (2)\]

Since

\[\overrightarrow{PL}\]  is perpendicular to the given line, which is parallel to  \[\overrightarrow{b} = \hat{i} + 2 \hat{j} + 3 \hat{k} \]   

we have  , 

\[\overrightarrow{PL} . \overrightarrow{b} = 0\]

\[ \Rightarrow \left\{ \left( \lambda - 1 \right) \hat{i} + \left( 2\lambda - 5 \right) \hat{j} + \left( 3\lambda - 1 \right) \hat{k} \right\} . \left( \hat{i}  + 2 \hat{j} + 3 \hat{k}  \right) = 0 \]

\[ \Rightarrow 1\left( \lambda - 1 \right) + 2\left( 2\lambda - 5 \right) + 3\left( 3\lambda - 1 \right) = 0\]

\[ \Rightarrow \lambda = 1\]

Substituting  \[\lambda = 1\]   in (1),

we get the position vector of as \[\hat{i}  + 3 \hat{j} + 5 \hat{k}\] 

Substituting  \[\lambda = 1\] in (2),

we get  , \[\overrightarrow{PL} = - 3 \hat{j} + 2 \hat{k}\]

\[= \sqrt{\left( - 3 \right)^2 + 2^2}\]

\[ = \sqrt{13}\]

Hence, the length of the perpendicular from point P on PL is \[\sqrt{13} \text{ units} \] .

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.4 | Q 8 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.


The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.


Find the coordinates of the point where the line through the points A(3, 4, 1) and B(5, 1, 6) crosses the XZ plane. Also find the angle which this line makes with the XZ plane.


The Cartesian equation of a line is `(x-5)/3 = (y+4)/7 = (z-6)/2` Write its vector form.


Find the equation of a line parallel to x-axis and passing through the origin.


Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`


Find the vector equation of a line which is parallel to the vector \[2 \hat{i} - \hat{j} + 3 \hat{k}\]  and which passes through the point (5, −2, 4). Also, reduce it to cartesian form.


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Find the cartesian equation of a line passing through (1, −1, 2) and parallel to the line whose equations are  \[\frac{x - 3}{1} = \frac{y - 1}{2} = \frac{z + 1}{- 2}\]  Also, reduce the equation obtained in vector form.


Show that the three lines with direction cosines \[\frac{12}{13}, \frac{- 3}{13}, \frac{- 4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{- 4}{13}, \frac{12}{13}\] are mutually perpendicular. 


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the through the points (0, 3, 2) and (3, 5, 6).


Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]  are perpendicular to each other. 


Find the equation of a line parallel to x-axis and passing through the origin.


Find the angle between the following pair of line: 

\[\overrightarrow{r} = \lambda\left( \hat{i} + \hat{j} + 2 \hat{k} \right) \text{ and } \overrightarrow{r} = 2 \hat{j} + \mu\left\{ \left( \sqrt{3} - 1 \right) \hat{i} - \left( \sqrt{3} + 1 \right) \hat{j} + 4 \hat{k} \right\}\]

 


Find the angle between the pairs of lines with direction ratios proportional to   abc and b − cc − aa − b.


Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the  other one is obtained by joining the points (3, 1, 4) and (7, 2, 12). 


Find the equations of the line passing through the point (2, 1, 3) and perpendicular to the lines  \[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \text{  and  } \frac{x}{- 3} = \frac{y}{2} = \frac{z}{5}\]


Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{    and    } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Prove that the line \[\vec{r} = \left( \hat{i }+ \hat{j }- \hat{k} \right) + \lambda\left( 3 \hat{i} - \hat{j} \right) \text{ and } \vec{r} = \left( 4 \hat{i} - \hat{k} \right) + \mu\left( 2 \hat{i} + 3 \hat{k} \right)\] intersect and find their point of intersection.


Find the shortest distance between the following pairs of lines whose cartesian equations are: \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} and \frac{x - 2}{3} = \frac{y - 3}{4} = \frac{z - 5}{5}\] 


Find the shortest distance between the following pairs of lines whose cartesian equations are:  \[\frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} \text{ and } \frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1}\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines

 (1, 3, 0) and (0, 3, 0)


Write the vector equations of the following lines and hence determine the distance between them  \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the direction cosines of the line whose cartesian equations are 2x = 3y = −z.

 

Write the angle between the lines 2x = 3y = −z and 6x = −y = −4z.

 

Write the value of λ for which the lines  \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\]  are perpendicular to each other.


Write the condition for the lines  \[\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and  } \overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}\] to be intersecting.


Write the vector equation of a line given by \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]

 


The equations of a line are given by \[\frac{4 - x}{3} = \frac{y + 3}{3} = \frac{z + 2}{6} .\]  Write the direction cosines of a line parallel to this line.


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


If the direction ratios of a line are proportional to 1, −3, 2, then its direction cosines are

 


 The equation of a line is 2x -2 = 3y +1 = 6z -2 find the direction ratios and also find the vector equation of the line. 


The equation 4x2 + 4xy + y2 = 0 represents two ______ 


Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.


Find the cartesian equation of the line which passes ·through the point (– 2, 4, – 5) and parallel to the line given by.

`(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×