Advertisements
Advertisements
प्रश्न
Show that the lines \[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text { and }\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] are perpendicular to each other.
उत्तर
We have
\[\frac{x - 5}{7} = \frac{y + 2}{- 5} = \frac{z}{1} \text {and} \frac{x}{1} = \frac{y}{2} = \frac{z}{3}\]
These equations can be re-written as
\[\frac{x - 5}{7} = \frac{y - \left( - 2 \right)}{- 5} = \frac{z - 0}{1} . . . (1) \]
\[\frac{x - 0}{1} = \frac{y - 0}{2} = \frac{z - 0}{3} . . . (2)\]
\[\therefore \overrightarrow{m_1} = \text{ Vector parallel to line } (1) = 7 \hat{i} - 5 \hat{j} + \hat{k} \]
\[ \overrightarrow{m_2} = \text{ Vector parallel to line } (2) = \hat{i} + 2 \hat{j} + 3 \hat{k} \]
Now,
\[\overrightarrow{m_1} . \overrightarrow{m_2} = \left( 7 \hat{i} - 5 \hat{j} + \hat{k} \right) . \left( \hat{i}+ 2 \hat{j} + 3 \hat{k} \right)\]
\[ = 7 - 10 + 3\]
\[ = 0\]
Hence, the given two lines are perpendicular to each other.
APPEARS IN
संबंधित प्रश्न
The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.
Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the vector and cartesian equations of the line through the point (5, 2, −4) and which is parallel to the vector \[3 \hat{i} + 2 \hat{j} - 8 \hat{k} .\]
Find the vector equation of a line passing through the point with position vector \[\hat{i} - 2 \hat{j} - 3 \hat{k}\] and parallel to the line joining the points with position vectors \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.
Find the points on the line \[\frac{x + 2}{3} = \frac{y + 1}{2} = \frac{z - 3}{2}\] at a distance of 5 units from the point P (1, 3, 3).
Find the equation of a line parallel to x-axis and passing through the origin.
Find the angle between the following pair of line:
\[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{- 3} \text { and } \frac{x + 3}{- 1} = \frac{y - 5}{8} = \frac{z - 1}{4}\]
Find the angle between the following pair of line:
\[\frac{x - 5}{1} = \frac{2y + 6}{- 2} = \frac{z - 3}{1} \text{ and } \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 6}{5}\]
Find the angle between the pairs of lines with direction ratios proportional to 1, 2, −2 and −2, 2, 1 .
Find the angle between two lines, one of which has direction ratios 2, 2, 1 while the other one is obtained by joining the points (3, 1, 4) and (7, 2, 12).
Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]
Find the equation of the line passing through the point (1, −1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, −1, 0) and (1, 2, −1), (2, 1, 1).
Determine the equations of the line passing through the point (1, 2, −4) and perpendicular to the two lines \[\frac{x - 8}{8} = \frac{y + 9}{- 16} = \frac{z - 10}{7} \text{ and } \frac{x - 15}{3} = \frac{y - 29}{8} = \frac{z - 5}{- 5}\]
Find the vector equation of the line passing through the point (2, −1, −1) which is parallel to the line 6x − 2 = 3y + 1 = 2z − 2.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\] are perpendicular, find the value of λ.
Find the value of λ so that the following lines are perpendicular to each other. \[\frac{x - 5}{5\lambda + 2} = \frac{2 - y}{5} = \frac{1 - z}{- 1}, \frac{x}{1} = \frac{2y + 1}{4\lambda} = \frac{1 - z}{- 3}\]
Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{ and } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\] intersect. Find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 5}{4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} and \frac{x - 8}{7} = \frac{y - 4}{1} = \frac{3 - 5}{3}\]
Find the foot of the perpendicular drawn from the point A (1, 0, 3) to the joint of the points B (4, 7, 1) and C (3, 5, 3).
Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, −1, 3) and C(2, −3, −1).
Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines
(i) (0, 0, 0) and (1, 0, 2)
Write the vector equations of the following lines and hence determine the distance between them \[\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z + 4}{6} \text{ and } \frac{x - 3}{4} = \frac{y - 3}{6} = \frac{z + 5}{12}\]
Write the cartesian and vector equations of Y-axis.
Cartesian equations of a line AB are \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\] Write the direction ratios of a line parallel to AB.
Write the direction cosines of the line whose cartesian equations are 6x − 2 = 3y + 1 = 2z − 4.
Write the coordinate axis to which the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 1}{0}\] is perpendicular.
Write the value of λ for which the lines \[\frac{x - 3}{- 3} = \frac{y + 2}{2\lambda} = \frac{z + 4}{2} \text{ and } \frac{x + 1}{3\lambda} = \frac{y - 2}{1} = \frac{z + 6}{- 5}\] are perpendicular to each other.
If the equations of a line AB are
\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB.
Find the angle between the lines
\[\vec{r} = \left( 2 \hat{i} - 5 \hat{j} + \hat{k} \right) + \lambda\left( 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = 7 \hat{i} - 6 \hat{k} + \mu\left( \hat{i} + 2 \hat{j} + 2 \hat{k} \right)\]
The angle between the lines
The direction ratios of the line x − y + z − 5 = 0 = x − 3y − 6 are proportional to
The equation of the line passing through the points \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] is
Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.
The separate equations of the lines represented by `3x^2 - 2sqrt(3)xy - 3y^2` = 0 are ______
If slopes of lines represented by kx2 - 4xy + y2 = 0 differ by 2, then k = ______
The distance of the point (4, 3, 8) from the Y-axis is ______.
Find the position vector of a point A in space such that `vec"OA"` is inclined at 60º to OX and at 45° to OY and `|vec"OA"|` = 10 units.
P is a point on the line joining the points A(0, 5, −2) and B(3, −1, 2). If the x-coordinate of P is 6, then its z-coordinate is ______.