Advertisements
Advertisements
प्रश्न
Find the vector equation of a line passing through the point with position vector \[\hat{i} - 2 \hat{j} - 3 \hat{k}\] and parallel to the line joining the points with position vectors \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.
उत्तर
We know that the vector equation of a line passing through a point with position vector `vec a` and parallel to the vector ` vec b ` is ` \[\vec{r} = \vec{a} + \lambda \vec{b}\]
Here,
\[\vec{a} = \hat{i} - 2 \hat{j} - 3 \hat{k} \]
\[ \vec{b} = \left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right) - \left( \hat{i} - \hat{j} + 4 \hat{k} \right) = \hat{i} + 2 \hat{j} - 2 \hat{k}\]
Vector equation of the required line is
\[\vec{r} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) . . . (1)\]
\[\text{ Here } , \lambda \text{ is a parameter } . \]
Reducing (1) to cartesian form, we get
\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right) \text {Putting } \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \text{ in } (1)]\]
\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 1 + \lambda \right) \hat{i} + \left( - 2 + 2 \lambda \right) \hat{j} + \left( - 3 - 2\lambda \right) \hat{k} \]
\[\text{ Comparing the coefficients of } \hat{i} , \hat{j} \text{ and }\hat{k}, \text{ we get } \]
\[x = 1 + \lambda, y = - 2 + 2 \lambda, z = - 3 - 2\lambda\]
\[ \Rightarrow \frac{x - 1}{1} = \lambda, \frac{y + 2}{2} = \lambda, \frac{z + 3}{- 2} = \lambda\]
\[ \Rightarrow \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2} = \lambda\]
\[\text{ Hence, the cartesian form of (1) is } \]
\[\frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2}\]
APPEARS IN
संबंधित प्रश्न
Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.
The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.
Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).
Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`
Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).
Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).
The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\] Find a vector equation for the line.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the pairs of lines with direction ratios proportional to 2, 2, 1 and 4, 1, 8 .
Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\] are perpendicular, find the value of λ.
Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{ and } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\] intersect. Find their point of intersection.
Determine whether the following pair of lines intersect or not:
\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D.
Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} + \lambda\left( 3 \hat{i} - \hat{j} + \hat{k} \right) \text{ and } \vec{r} = - 3 \hat{i} - 7 \hat{j} + 6 \hat{k} + \mu\left( - 3 \hat{i} + 2 \hat{j} + 4 \hat{k} \right)\]
By computing the shortest distance determine whether the following pairs of lines intersect or not : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k} \right) \text{ and } \overrightarrow{r} = \left( 2 \hat{i} - \hat{j} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]
By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]
Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]
Write the cartesian and vector equations of Y-axis.
Cartesian equations of a line AB are \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\] Write the direction ratios of a line parallel to AB.
If the equations of a line AB are
\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB.
Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]
Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.
The equation of the line passing through the points \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] is
The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is
The shortest distance between the lines \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\]
Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.
If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k.
If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then
Choose correct alternatives:
The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2
Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______
The distance of the point (4, 3, 8) from the Y-axis is ______.
Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.