मराठी

Find the Vector Equation of a Line Passing Through the Point with Position Vector ^ I − 2 ^ J − 3 ^ K and Parallel to the Line Joining the Points ^ I − ^ J + 4 ^ K and 2 ^ I + ^ J + 2 ^ K . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of a line passing through the point with position vector  \[\hat{i} - 2 \hat{j} - 3 \hat{k}\]  and parallel to the line joining the points with position vectors  \[\hat{i} - \hat{j} + 4 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 2 \hat{k} .\] Also, find the cartesian equivalent of this equation.

बेरीज

उत्तर

We know that the vector equation of a line passing through a point with position vector `vec a`   and parallel to the vector ` vec b ` is ` \[\vec{r} = \vec{a} + \lambda \vec{b}\] 

Here, 

\[\vec{a} = \hat{i} - 2 \hat{j} - 3 \hat{k} \]

\[ \vec{b} = \left( 2 \hat{i} + \hat{j} + 2 \hat{k}  \right) - \left( \hat{i} - \hat{j} + 4 \hat{k} \right) = \hat{i} + 2 \hat{j} - 2 \hat{k}\] 

Vector equation of the required line is 

\[\vec{r} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k}  \right) . . . (1)\]

\[\text{ Here } , \lambda \text{ is a parameter } . \]

Reducing (1) to cartesian form, we get

\[x \hat{i} + y \hat{j} + z \hat{k} = \left( \hat{i} - 2 \hat{j} - 3 \hat{k} \right) + \lambda \left( \hat{i} + 2 \hat{j} - 2 \hat{k} \right)  \text {Putting  }  \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}  \text{ in }  (1)]\]

\[ \Rightarrow x \hat{i} + y \hat{j} + z \hat{k} = \left( 1 + \lambda \right) \hat{i} + \left( - 2 + 2 \lambda \right) \hat{j} + \left( - 3 - 2\lambda \right) \hat{k} \]

\[\text{ Comparing the coefficients of   } \hat{i} , \hat{j} \text{ and }\hat{k}, \text{ we get } \]

\[x = 1 + \lambda, y = - 2 + 2 \lambda, z = - 3 - 2\lambda\]

\[ \Rightarrow \frac{x - 1}{1} = \lambda, \frac{y + 2}{2} = \lambda, \frac{z + 3}{- 2} = \lambda\]

\[ \Rightarrow \frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2} = \lambda\]

\[\text{ Hence, the cartesian form of (1) is } \]

\[\frac{x - 1}{1} = \frac{y + 2}{2} = \frac{z + 3}{- 2}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Straight Line in Space - Exercise 28.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 28 Straight Line in Space
Exercise 28.1 | Q 13 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the separate equations of the lines represented by the equation 3x2 – 10xy – 8y2 = 0.


The Cartestation equation of  line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.


 

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l1.

 

Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r=(mbarb+nbara)/(m+n)` . Hence find the position vector of R which divides the line segment joining the points A(1, –2, 1) and B(1, 4, –2) internally in the ratio 2 : 1.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).


Find the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines `(x - 8)/3 = (y + 19)/(-16) = (z - 10)/7` and `(x - 15)/3 = (y - 29)/8 = (z - 5)/(-5)`


Find the vector equation of the line passing through the points (−1, 0, 2) and (3, 4, 6).


Find in vector form as well as in cartesian form, the equation of the line passing through the points A (1, 2, −1) and B (2, 1, 1).


The cartesian equations of a line are \[\frac{x - 5}{3} = \frac{y + 4}{7} = \frac{z - 6}{2} .\]  Find a vector equation for the line.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1). 


Find the angle between the pairs of lines with direction ratios proportional to  2, 2, 1 and 4, 1, 8 .

 


Find the equations of the line passing through the point (−1, 2, 1) and parallel to the line  \[\frac{2x - 1}{4} = \frac{3y + 5}{2} = \frac{2 - z}{3} .\]


If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{2 \lambda} = \frac{z - 3}{2} \text{     and     } \frac{x - 1}{3\lambda} = \frac{y - 1}{1} = \frac{z - 6}{- 5}\]  are perpendicular, find the value of λ.


Show that the lines \[\frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \text{           and                  } \frac{x - 2}{1} = \frac{y - 4}{3} = \frac{z - 6}{5}\]   intersect. Find their point of intersection.


Determine whether the following pair of lines intersect or not: 

\[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\] 


A (1, 0, 4), B (0, −11, 3), C (2, −3, 1) are three points and D is the foot of perpendicular from A on BC. Find the coordinates of D


Find the shortest distance between the following pairs of lines whose vector equations are: \[\vec{r} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k}  + \lambda\left( 3 \hat{i}  - \hat{j}  + \hat{k}  \right) \text{ and }  \vec{r} = - 3 \hat{i}  - 7 \hat{j}  + 6 \hat{k}  + \mu\left( - 3 \hat{i}  + 2 \hat{j}  + 4 \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not  : \[\overrightarrow{r} = \left( \hat{i} - \hat{j} \right) + \lambda\left( 2 \hat{i} + \hat{k}  \right) \text{ and }  \overrightarrow{r} = \left( 2 \hat{i} - \hat{j}  \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 1}{2} = \frac{y + 1}{3} = z \text{ and } \frac{x + 1}{5} = \frac{y - 2}{1}; z = 2\]


By computing the shortest distance determine whether the following pairs of lines intersect or not: \[\frac{x - 5}{4} = \frac{y - 7}{- 5} = \frac{z + 3}{- 5} \text{ and } \frac{x - 8}{7} = \frac{y - 7}{1} = \frac{z - 5}{3}\]


Find the shortest distance between the lines \[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and }  \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1}\]


Write the cartesian and vector equations of Y-axis.

 

Cartesian equations of a line AB are  \[\frac{2x - 1}{2} = \frac{4 - y}{7} = \frac{z + 1}{2} .\]   Write the direction ratios of a line parallel to AB.


If the equations of a line AB are 

\[\frac{3 - x}{1} = \frac{y + 2}{- 2} = \frac{z - 5}{4},\] write the direction ratios of a line parallel to AB


Find the Cartesian equations of the line which passes through the point (−2, 4 , −5) and is parallel to the line \[\frac{x + 3}{3} = \frac{4 - y}{5} = \frac{z + 8}{6} .\]


Find the angle between the lines 2x=3y=-z and 6x =-y=-4z.

 


The equation of the line passing through the points \[a_1 \hat{i}  + a_2 \hat{j}  + a_3 \hat{k}  \text{ and }  b_1 \hat{i} + b_2 \hat{j}  + b_3 \hat{k} \]  is 


The straight line \[\frac{x - 3}{3} = \frac{y - 2}{1} = \frac{z - 1}{0}\] is


The shortest distance between the lines  \[\frac{x - 3}{3} = \frac{y - 8}{- 1} = \frac{z - 3}{1} \text{ and }, \frac{x + 3}{- 3} = \frac{y + 7}{2} = \frac{z - 6}{4}\] 

 

 

 

 


Show that the lines \[\frac{5 - x}{- 4} = \frac{y - 7}{4} = \frac{z + 3}{- 5} \text { and } \frac{x - 8}{7} = \frac{2y - 8}{2} = \frac{z - 5}{3}\] are coplanar.


If y – 2x – k = 0 touches the conic 3x2 – 5y2 = 15, find the value of k. 


If the lines represented by kx2 − 3xy + 6y2 = 0 are perpendicular to each other, then


Choose correct alternatives:

The difference between the slopes of the lines represented by 3x2 - 4xy + y2 = 0 is 2


Auxillary equation of 2x2 + 3xy − 9y2 = 0 is ______ 


The distance of the point (4, 3, 8) from the Y-axis is ______.


Find the vector equation of a line passing through a point with position vector `2hati - hatj + hatk` and parallel to the line joining the points `-hati + 4hatj + hatk` and `-hati + 2hatj + 2hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×